The discovery of traces of huge icebergs off the coast of Florida

The discovery of traces of huge icebergs off the coast of Florida

Scientists have discovered more than 700 tracks on the sea floor off the eastern coast of the United States, left over from icebergs that scoured the bottom thousands of years ago.

When you think of Florida, you undoubtedly think of beaches along the azure sea, palm trees, and the sun shining profusely. It’s hard to imagine that huge icebergs could be enjoyed from the same beaches in the Sunshine State 31,000 years ago. However, this is true, say the researchers in the journal Nature Communications. “The idea that icebergs could reach Florida is a great idea,” said study researcher Alan Condron.

Condron and colleagues mapped the sea floor off the eastern coast of the United States. This results in the discovery of massive plow paths stretching from Cape Hatteras, North Carolina, all the way to the Florida Keys. They were left behind by huge icebergs (more than 300 meters thick) which, while scraping the bottom, moved south along the eastern coast of the United States.

“The discovery of plow tracks on such a low line is very unexpected,” Condon said. “Not only because of the exceptionally high rate of snowmelt in this region, but also because the tracks lie below the northward moving Gulf Stream.” This means that the icebergs moved against the current. And not just a short distance, but more than 5000 kilometers!

Icebergs left their mark on the sea floor. Photo: Gina Hill, USGS, Pacific Coastal and Marine Science Center.

Heinrich event
The researchers sampled sediment that filled plow paths left over by icebergs over time. By dating it, they were able to determine when the icebergs were dragged along the bottom. It turns out that this happened about 31,000 years ago, during the so-called Heinrich Event. This is a natural phenomenon where a large number of icebergs are liberated from glaciers and end up in the North Atlantic Ocean.

See also  Metro Detroit protests mandatory vaccination for Henry Ford Hospital employees

water soluble
Using the models, the researchers investigated how the icebergs moved farther south. The model reveals that icebergs can only get this far when huge amounts of meltwater are released into Hudson Bay as a glacial lake breaks through its banks. “Such a tidal wave creates a cold, fast-flowing southerly current that carries icebergs all the way to Florida,” Condron said. And when the researchers simulated such an island wave with their model, the model predicted the formation of plow paths in places where they were actually found. “What our model suggests is that these icebergs are carried by currents – created by glacial meltwater – and they actually roam along the coast. When a large glacial lake breaks through its shores and releases massive amounts of meltwater into the ocean, there is enough water to create such a current. strong along the coast that moves icebergs against the flow of the Gulf Stream.” Thus icebergs can reach Florida. In fact, the model suggests that the icebergs could make it further south and hit the Bahamas.

The research is important because it could provide more insights into how meltwater affects ocean currents. It is feared that climate change – and the resulting melting of the ice caps – will weaken these currents (see box).

The Atlantic Meridian Inversion Rotation (abbreviated AMOC) is located in the Atlantic Ocean. It is probably best to compare AMOC to a supermarket conveyor belt. At the surface, warm water is transported northward from the equator. The water cools down all the way. In addition, more water evaporates along the way than fresh water is added to it, which increases the salt concentration. The further north you go, the colder and saltier the water will be. This also makes the water heavier. The result? It sinks in the north, after which it is pumped – in depth – back to the equator. There it heats up again and the story begins again. However, climate change threatens to disrupt this flow due to rapid warming in the Arctic, especially Greenland. Greenland is home to a massive ice cap that is melting due to global warming and bringing large amounts of (fresh) meltwater into the ocean. This mixes with the brine, making it less salty and therefore less heavy. This water easily sinks to the depth, and therefore your mother becomes weaker. The weakening of the AMOC could also have severe consequences for surrounding regions, such as Western Europe. The AMOC releases some of the heat it carries north into the atmosphere, causing temperatures in Western Europe to be higher than they would have been in the absence of the AMOC.

What the new research has shown is that meltwater was able to travel south thousands of years ago. While it was eventually carried north again by the Gulf Stream, once it reached north it would have been much saltier due to mixing along the way. However, it is likely that the melt water would have a much smaller impact on the AMOC than if it had already ended up in the current in the far north. According to the researchers, it shows that the effect of meltwater on the flow – and thus also the surroundings’ climate – may be more complex than previously thought.

See also  The Perseid meteor shower 2020 peaks tonight - the best times to see it in the UK

So the traces left by icebergs on the sea floor thousands of years ago have implications for today. “Now that we can create more detailed computer models, we can also more accurately determine how the ocean rotates,” said researcher Gina Hill. This, in turn, determines how fresh-melt water is transported and can affect the AMOC – and the climate.

Leave a Reply

Your email address will not be published.